Chaos Expansion of 2d Parabolic Anderson Model
نویسندگان
چکیده
We prove a chaos expansion for the 2D parabolic Anderson Model in small time, with the expansion coefficients expressed in terms of the density function of the annealed polymer in a white noise environment.
منابع مشابه
Moments of 2d Parabolic Anderson Model
In this note, we use the Feynman-Kac formula to derive a moment representation for the 2D parabolic Anderson model in small time, which is related to the intersection local time of planar Brownian motions.
متن کاملar X iv : 0 70 6 . 23 90 v 1 [ m at h . PR ] 1 6 Ju n 20 07 STOCHASTIC PARABOLIC EQUATIONS OF FULL SECOND ORDER
A procedure is described for defining a generalized solution for stochastic differential equations using the Cameron-Martin version of the Wiener Chaos expansion. Existence and uniqueness of this Wiener Chaos solution is established for parabolic stochastic PDEs such that both the drift and the diffusion operators are of the second order.
متن کاملLinear Parabolic Stochastic PDE's and Wiener Chaos
We study Cauchy’s problem for a second-order linear parabolic stochastic partial differential equation (SPDE) driven by a cylindrical Brownian motion. Existence and uniqueness of a generalized (soft) solution is established in Sobolev, Hölder, and Lipschitz classes. We make only minimal assumptions, virtually identical to those common to similar deterministic problems. A stochastic Feynman–Kac ...
متن کاملWeak and almost sure limits for the parabolic Anderson model with heavy tailed potentials
We study the parabolic Anderson problem, i.e., the heat equation ∂tu = ∆u + ξu on (0,∞) × Z d with independent identically distributed random potential {ξ(z) : z ∈ Z} and localised initial condition u(0, x) = 10(x). Our interest is in the long-term behaviour of the random total mass U(t) = Pz u(t, z) of the unique non-negative solution in the case that the distribution of ξ(0) is heavy tailed. ...
متن کاملWeak and Almost Sure Limits for the Parabolic Anderson Model with Heavy Tailed Potentials by Remco
We study the parabolic Anderson problem, that is, the heat equation ∂tu= u+ ξu on (0,∞)×Zd with independent identically distributed random potential {ξ(z) : z ∈ Zd } and localized initial condition u(0, x)= 10(x). Our interest is in the long-term behavior of the random total mass U(t) = ∑ z u(t, z) of the unique nonnegative solution in the case that the distribution of ξ(0) is heavy tailed. For...
متن کامل